Stundenprotokoll vom Montag, 3. Juni 2002

Es fehlt: Felix

Beginn der Versuche für die Teilnahme am Wettbewerb zum Thema Lebensmittelzusatzstoffe.

Da jetzt kein richtiger Unterricht stattfindet, sondern zum größten Teil Gruppenarbeit. Werde ich den Versuch mit Anna zusammen protokollieren. Bilder mache ich auf Wunsch auch von anderen Gruppen, die dann im Internet zu sehen sind.

Gruppe Anna und Lukman: modifizierte Stärke.

Verwendetes Produkt: Knorr Fix für Sauerbraten

Zutaten (auf der Packung angegeben, gut leserlich): modifizierte Stärke, jodiertes Speisesalz, Rinderfett, Milchzucker, Tomatenpulver, Maltodextrin, Sellerie, Weizenmehl, Geschmacksverstärker (Mononatriumglutamat, Dinatriuminosinat, Dinatriumguanylat), Aroma, Säuerungsmittel Citronensäure, Säureregulator, Natriumdiacetat, Zucker, Paprika, Farbstoff Einfaches Zuckerkulör, Pflanzliches Öl gehärtet, Milcheiweiß, Hefeextrakt, Speisesalz, Knoblauch, Pfeffer, Lorbeerblätter, Nelken, Traubenzucker.

Die Angabe der modifizierten Stärke zu Beginn der Zutatenliste deutet auf einen großen Gewichtsanteil in dem Produkt hin, so dass es für unsere Versuch gut passt.

Versuch a)

Versuchsdurchführung (VA)	Beobachtung (VB)
Einen halben Spatel vom Fix in	Das hellbraune Pulver löst sich schnell im Wasser. Es
etwa 50 ml Leitungswasser lösen	entsteht eine gelbbraune, trübe Lösung.
Zugabe von Jod	Die rotbraune Farbe des Jods bleibt beim Hineintropfen
	erhalten. Die Lösung wird dunkelbraun. Beim
	Hineintropfen bilden sich zunächst zwei Phasen, die mit
	der Zeit (oder durch Rühren) vermischt werden können.
	Die Farbe der Lösung wird dann ziemlich dunkelbraun.
	Jedoch ist keine Blaufärbung zu erkennen.
	VD: Es bildet sich kein Stärke-Jod-Komplex.
Lösung erhitzen	Beim Erhitzen wird die Lösung heller (gelblicher). Ein
	brauner Film, bestehend aus dunklen Teilchen, die auf der
	Oberfläche schwommen werden nachher auch gelb.
Zugabe von Jod	Beim Hineintropfen zeigt sich kurz eine blaue Farbe, die
	sich dann auflöst.
	VD: Das Jod wird zu Jodid reduziert. D.h. eine Redox-
	Reaktion muss stattgefunden haben. Ein Stoff, der als
	Reduktionsmittel dienst ist unbekannt, vielleicht ein
	Metall (Natrium?). In dem Fix sind aber noch viele
	andere Stoffe, die oxidiert werden können.
Weiteres Erhitzen bis die Lösung	Es zeigt sich keine Blaufärbung.
kocht	VD: Durch das Aufkochen sind auf jeden Fall die
	einzelnen Stärkemoleküle voneinander getrennt und in
	Lösung gegangen. Da sich keine Blaufärbung zeigt, liegt

	kein molekulares Jod mehr vor, sondern nur noch Jodid.
Abkühlen und Jodzugabe	Schon bei geringer Zugabe von Jod, färbt sich die Lösung
	tiefblau.
	VD: Der Stärke-Jod-Komplex ist entstanden. Die lösliche
	Stärke ist in Lösung gegangen und lässt sich hiermit
	nachweisen.
Erneutes Erwärmen der Lösung	Die tiefblaue Farbe löst sich langsam auf, bis wieder die
	ursprüngliche gelbe Farbe vorhanden ist.
	VD: Durch das Erwärmen müssen einige Stoffe wieder in
	der Lage sein, Elektronen zu spenden, so dass das Jod zu
	Jodid wird und sich der blaue Stärke-Jod-Komplex
	auflöst.

Versuch b)

Versuchsdurchführung (VA)	Beobachtung (VB)
Neues Leitungswasser (etwa 50	Die Lösung wird wie bei a) gelbbraun. Das Pulver löst
ml) in einem zweiten Becherglas	sich schneller.
aufkochen. Zum kochendem	
Wasser Fix dazugeben	
Zur kochenden Lösung Zugabe	Es färbt sich blau, löst sich aber wieder auf.
von Jod	
Abkühlen und Jodzugabe	Schon bei geringer Zugabe von Jod, färbt sich die Lösung
	tiefblau.
Erwärmen der Lösung	Die tiefblaue Farbe löst sich langsam auf, bis wieder die
	ursprüngliche gelbe Farbe vorhanden ist.

VD: Durch das Aufkochen, werden die Stärkemoleküle voneinander getrennt und die lösliche Stärke geht in Lösung, so dass sie durch Jod nachgewiesen werden kann. Solange die Lösung kocht, sind Stoffe im Fix vorhanden, die als Reduktionsmittel dienen können, so dass sie das Zugegebene Jod zu Jodid reduzieren und die blaue Farbe wieder verschwindet. Sobald man die Lösung abkühlen lässt, bleibt die Stärke in Lösung und das Reduktionsmittel wird deaktiviert, denn schon sehr wenig Jod erzeugt eine tiefblaue Farbe der Lösung.

Versuch c)

Versuchsdurchführung (VA)	Beobachtung (VB)
0,1 g Fix + 10 ml destilliertes	Die Lösung ist gelblich trübe.
Wasser	
$\left[\frac{0.1g \ Fix}{10ml \ dest. Wasser} = \frac{1g}{100ml} = 1\% \right]$	
Aufkochen und wieder abkühlen.	Ein Tropfen von 0,05 mol/l Jod wird schon tiefblau!
Da beim Kochen, Wasser verdampft	VD: siehe oben, auch in so einer geringen Menge von
ist, füllen wir die Lösung ist einen	0,1 g Fix ist so viel Stärke vorhanden, dass ein Tropfen
Messzylinder um und geben bis 10	Jod genügt, um die 1% Fix Lösung tiefblau zu
ml destilliertes Wasser (kalt) hinzu.	verfärben.